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Abstract. The optical properties of the quarter-filled single-band CDW systems have been reexamined
in the model with the electron-phonon coupling related to the variations of electron site energies. It
appears that the indirect, electron-mediated coupling between phase phonons and external electromagnetic
fields vanishes for symmetry reasons, at variance with the infrared selection rules used in the generally
accepted microscopic theory. It is shown that the phase phonon modes and the electric fields couple
directly, with the coupling constant proportional to the magnitude of the charge-density wave. The single-
particle contributions to the optical conductivity tensor are determined for the ordered CDW state and the
related weakly doped metallic state by means of the Bethe-Salpeter equations for elementary electron-hole
excitations. It turns out that this gauge-invariant approach establishes a clear connection between the
effective numbers of residual, thermally activated and bound charge carriers. Finally, the relation between
these numbers and the activation energy of dc conductivity and the optical CDW gap scale is explained
in the way consistent with the conductivity sum rules.

PACS. 71.45.Lr Charge-density-wave systems – 78.30.-j Infrared and Raman spectra – 78.20.Bh Theory,
models, and numerical simulation

1 Introduction

The electrodynamics of low-dimensional multiband sys-
tems in which strong correlations responsible for forma-
tion of localized electronic states coexist with correlations
responsible for charge-density-wave ordering (CDW) still
attract great attention. The vanadium chain compound
BaVS3 is a typical example of such (magnetic) metals with
the commensurate CDW instability [1–4]. In this system,
basic electrodynamic properties are related to one wide
band, while magnetic anomalies are associated with more
or less localized states in two narrow bands. The relations
between the mid-infrared (MIR) energy scales, measured
at temperatures below the critical CDW temperature, the
activation energies of transport coefficients and the re-
lated effective numbers of conduction electrons are not
entirely clear [3]. In order to explain these relations in sim-
ple physical terms, one needs, in the first place, a precise
description of the CDW coherence effects in the quarter-
filled wide band. This problem that is still not completely
solved for the single-band case is in the focus of this work.

The previous theoretical work [5–18] on the electro-
dynamics of the single-band CDW systems followed two
basic routes. First, the collective contributions have been
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studied to explain the low- and zero-frequency proper-
ties of the incommensurate CDW systems, with the em-
phasis on the non-linear conductivity regime [12,13]. The
main controversies characterizing early theoretical inves-
tigations are resolved using accurate symmetry analy-
ses, with a particular care devoted to the local field ef-
fects [14]. The principal physical problem in these analy-
ses is that the coupling between infrared-active collective
modes and external electromagnetic fields is shown as a
simple function of the single-particle (interband) polar-
izability [5,7,13,14], which implies the indirect electron-
mediated, rather than the direct, photon-phase phonon
coupling. The high (MIR) frequency analyses [17,18], on
the other hand, were focused on the precise description of
the single-particle excitations, in particular on the rigor-
ous treatment of the square-root singularity in the optical
conductivity spectra at �ω = 2∆. It is shown that the
controversies related to the high-frequency optical spec-
tra usually reflect the incorrect treatment of the diamag-
netic current in the transverse response approaches, and,
consequently, can be easily avoided using the longitudinal
response theory [19].

In this article, we consider a quarter-filled single-band
CDW system and a related tetramerized metallic sys-
tem in which all non-retarded short-range interactions
are neglected, and all coherence effects in the correlation
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functions associated with the retarded, phonon-mediated
interations are treated exactly through the known analyt-
ical form of the current vertices and the inverse effective-
mass tensor. Using this exactly solvable model, we reex-
amine several textbook results [5–8] for the dc and optical
conductivity of commensurate CDW systems. The analy-
sis is however limited by the use of several approximations.
We consider a Holstein-like electron-phonon coupling in
which the coupling constant is independent of the elec-
tron wave vectors. Being interested in the optical conduc-
tivity spectra obtained by the reflectivity measurements,
which are characterized by a relatively poor resolution in
the low-frequency part of the spectra, we approximate the
total optical conductivity by the sum of the collective and
single-particle contributions, with the local field effects in-
cluded only in the collective term. In the numerical anal-
ysis of the single-particle term, we consider the simplest
case in which two relaxation rates are assumed to be inde-
pendent of frequency and temperature. Finally, the com-
mensurability (Umklapp) effects are present in the model
through the shift of the phase phonon frequency to a fi-
nite value and through the commensurate photon-phonon
coupling (see Sect. 5).

The article is organized as follows. In Section 2, the
band dispersions of the tetramerized CDW case are briefly
discussed. In Sections 3 and 4.1, we consider the electron-
hole excitations in the two-band version of the model in
which the Umklapp effects are neglected. The emphasis is
on the clear identification of the effectively free and effec-
tively bound charge carriers in the underdamped regime
(the interband damping energy is small in comparison
with the CDW gap), their relation to both the activa-
tion energy of dc conductivity and the MIR scale in the
optical conductivity. The brief discussion of the optical
conductivity spectra in the overdamped regime, tenta-
tively related to the hybridizations/interactions with lo-
calized electronic states, is given in Section 4.2. In Sec-
tion 5, the infrared selection rules for the collective modes
in the commensurate CDW systems are discussed in some
detail. It is shown that the (interband) electron-mediated
photon-phase phonon coupling vanishes for symmetry rea-
sons, and that the direct coupling is proportional to the
magnitude of the charge-density wave.

2 Tetramerized CDW case

2.1 Bloch energies

The starting point of the present analysis is the Q1D
tetramerized model in which the electron-phonon coupling
is formulated in terms of the displacement vector

ui = uϕi + uAi =

√
2
N

∑
q≈0

eiq·ri
[
uϕq cosφi − uAq sinφi

]
,

(1)
where φi = Q · ri − φ, ri is the position of an atom and
φ is an arbitrary phase. Two Fourier components of in-
terest, uAq and uϕq, are functions of two ordinary com-
ponents of the wave vectors q ± Q, as follows uAq =

<u >A

+δε +δε −δε −δε−δε

Fig. 1. Variations of the electron site energies (−δε, +δε, +δε,
−δε) induced by the periodic (tetramerization) lattice distor-
tion uAq → δq,0〈uA〉 and φ = π/4 in equation (1). The solid
and dashed arrows illustrate the Raman-active and infrared-
active q ≈ 0 modes. The effective charges of the white and the
black ions are +q and −q, respectively. Here δε =

√
2∆ and

q = qc/
√

2.

(1/
√

2)
[
uq+Q+uq−Q

]
and uϕq = (i/

√
2)

[
uq+Q−uq−Q

]
.

uAi and uϕi correspond to two similar lattice deforma-
tions which phase is shifted by π/2 and which frequency
is expected to be strongly renormalized for low enough
temperatures and for the band filling close to the quarter
filling (evidently, uλq = u†

λ−q, with λ = A,ϕ being the
phonon branch index). Q = (0.5π/a,Qy) is the nesting
vector of the Fermi surface of the quarter-filled (CDW)
case, or the tetramerization vector in a general (metallic)
case. The related variations of the electron site energies
(see Fig. 1), which are assumed to be the main mecha-
nism of the electron-phonon coupling here, are

V (ri) = Vϕ(ri) + VA(ri)

=
2g√
N

∑
q≈0

eiq·ri
[
uϕq sinφi + uAq cosφi

]
. (2)

g is the electron-phonon coupling constant. The direct in-
spection of Figure 1 shows that the periodic lattice distor-
tion associated with the replacement uAq → δq,0〈uA〉 +
uAq leads to the charge transfer of the magnitude qc (de-
termined in Sect. 5) modulated by the wave vector Q. This
lattice distortion makes uAq and uϕq to be the long wave-
length phonon modes which are, respectively, Raman and
infrared active. The other phonon modes are taken into
account later in Section 3, and are treated on the same
footing with the static disorder.

The CDW instability of the quarter-filled Q1D elec-
tronic systems in the case in which the disorder is absent
and the electron-phonon coupling g is independent of the
electron wave vectors is described by the well-known text-
book expressions (see Eqs. (33)–(42) in Appendix). The
commensurability effects enter in the theory through the
φ dependent (Umklapp) contributions in the Bloch ener-
gies EL(k). For example, in the 1D limit (tb → 0), the
four Bloch energies EL(k) are (L = C,C, V, V is the band
index)

EC,C(k) = −
√

2t2a + 2∆2 ± 2t(k),

EV,V (k) =
√

2t2a + 2∆2 ∓ 2t(k), (3)

t(k) =
√

2∆2t2a + t4a cos2 2kxa+∆4 cos2 2φ,

with ta and tb being the bond energies in the highly con-
ducting direction and in the perpendicular direction, re-
spectively, and ∆ = g〈uA〉/

√
N is the magnitude of the
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order parameter. When ∆ is small enough, the dispersions
of two lowest bands can be approximated by

EC,C(k) = ε̃(k) ∓
√
ε̃2(k) − εc(k)εc(k) − U(k). (4)

Here εc(k) = ε(k) = −∑
α 2tα cos kαaα and εc(k) =

|ε(k + Q)| are two relevant bare dispersions, and 2ε̄(k) =
εc(k) + εc(k), ε̃(k) ≈ ε̄(k) +∆2/(2ε̄(k)) are useful abbre-
viations. The Umklapp processes are represented in the
dispersions (4) through

U(k) ≈ α

(
1 +

∆2

4ε̄2(k)

)
2∆4 − δ4(k) − (δ∗(k))4

4ε̄2(k)
, (5)

with δ(k) = ∆ exp{iφ(k)}, φ(k) = sgn(kx)φ and α = 1.
The quarter-filled α = 0 limit of equation (4) with ε̃2(k) ≈
ε̄2(k) +∆2 corresponds to the usual Peierls model which
electrodynamic properties will be studied in more detail
in Sections 3 and 4.

2.2 Optical conductivity in pure CDW systems

In the present context, the main effect of the Umklapp
processes is to shift the renormalized frequency ωϕ0 of the
q = qxêx = 0 phase phonon mode from zero to a finite
value [5]. Together with other pinning mechanisms, this
gives the collective contribution to the optical conductiv-
ity of the form (see Fig. 2a)

σϕxx(ω) =
e2n

m∗
iω

ω
(
ω + iγϕq

) − ω2
ϕq

, (6)

with m∗ being the collective mode effective mass. In the
pure case, where the scattering of electrons on both the
disorder and the phonon modes is neglected, ωϕq and γϕq

in equation (6) are the solutions of the usual functional
integral approach [10], or the solutions of the Dyson equa-
tion shown in Figure 2b [5–7]. The structure of m∗ and
ωϕq is discussed in more detail in Section 5 and Appendix.

The related single-particle contribution to the optical
conductivity (Fig. 2c) is given, for example, by the gauge-
invariant expression

σsp
αα(ω) =

iω

q2α
χ1,1(qα, ω) = −iωα(qα, ω) (7)

obtained by means of the longitudinal response theory [20]
(the left-hand side of Fig. 2c, with q = qαêα). χ1,1(qα, ω)
is the sum of the intra- and interband charge-charge corre-
lation functions defined in Appendix, and α(qα, ω) is the
related polarizability.

3 Bethe-Salpeter equations

We take the collective mode contribution (6) aside and
continue with the examination of the (single-particle) elec-
trodynamic properties of the α = 0 two-band model of
equations (4, 5). The Bloch energies are

EC,C(k) = ε̄(k) ∓
√

(1/4)ε2cc(k) +∆2, (8)

(b)

(a)

(c)

Fig. 2. The collective (a) and single-particle (c) contributions
to the optical conductivity in pure regime of the present CDW
model. The solid lines are the electron propagators and the
zigzag lines are the phonon propagators. The open circles, the
open squares and the full circles represent the charge vertices,
the current vertices and the electron-phonon coupling con-
stants, respectively. The dashed line is the external scalar field
V ext(q, ω) and the wavy line is the related electric field (see
Eq. (13)). (b) The Dyson equation for the phonon Green func-
tions. The phonon self-energy is given by the expression (42)
in Appendix.

with εcc(k) = εc(k) − εc(k). To make the analysis more
general, we consider two regimes of the two-band model
close to the quarter filling in which an important role is
played by thermally activated electrons in both transport
and optical properties. The first regime corresponds to the
ordered CDW state considered above, while the second
regime is associated with the metallic state, where the
doubled Fermi wave vector is 2kF �= Qx = 0.5π/a.

3.1 Relaxation processes on the (quasi)static disorder

Having in mind the known structure of the current vertices
related to the bands (8) [21], or, alternatively, calculating
the long wavelength charge vertices (29), we can make
the generalization of the optical conductivity (7) to the
case in which the (quasi)static disorder is present. This
can be easily done by using the longitudinal equation-of-
motion approach [20,22], because this approach treats the
(intraband) charge continuity equation in a natural way
(the calculation is more complicated in the transverse re-
sponse theory [23]). The result (Eqs. (22) and (25)) is
equal to equation (7) with the adiabatic term η in the
charge-charge correlation functions replaced by two phe-
nomenological damping energies �Γ intra

α and �Γ inter
α .

The longitudinal equation-of-motion approach is one
example of the calculations which describe the elementary
electron-hole excitations in the effective single-particle
multiband models in the gauge-invariant way. The Bethe-
Salpeter approach, described below, is another example.
In both cases, the elementary excitations are represented
by the Matsubara electron-hole propagator

DLL′
(k,k+,k′

+,k
′, τ) =

∑
n

DLL′
(2n)(k,k+,k′

+,k
′, τ),
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(a)

(b)

(c)

Fig. 3. (a) The Bethe-Salpeter equations. (b) The related self-

consistent equations for the induced densities δnLL′
(k, ω). The

diamond represents the electron-hole self-energy. (c) The gen-
eralization of Figure 2c.

where

DLL′
(n) (k,k+,k′

+,k
′, τ) =

(−1)n+1

�nn!

∫ β�

0

dτ1 . . .

∫ β�

0

dτn

×〈Tτ
[
H ′

1(τ1) . . .H
′
1(τn)c†Lkσ(τ)cL′k+qσ(τ)

×c†L′k′+qσ(0)cLk′σ(0)
]〉 (9)

and k+ = k + q. Here H ′
1 describes the scattering of

conduction electrons on the (quasi)static disorder. Using
this approach, it is possible to treat the relaxation pro-
cesses on impurities, on lattice imperfections, and even on
soft phonons. The hybridization with other (uncorrelated)
bands can also be studied in this way.

3.2 Relaxation processes on phonons

In the presence of inelastic electron scattering processes on
phonon modes, or other boson modes in general, one can
use a similar longitudinal diagrammatic approach based
on the self-consistent Bethe-Salpeter equations for

ΦLL
′
(k; iωn) ≡ ΦLL

′
(k,k+,k′

+,k
′, iωn, iωn+)

(iωn+ = iωn + iνn). In this case H ′
1 in equation (9) rep-

resents the electron-phonon Hamiltonian (36) with the
phonon wave vector q′ running over the entire Brillouin
zone and the phonon branch index λ running over all (elas-
tic and inelastic) scattering channels. ΦLL

′
(k; iωn) is de-

fined by the Fourier transform of DLL′
(k,k+,k′

+,k
′, τ),

DLL′
(k,k+,k′

+,k
′, iνn) =

(�/β)
∑
iωn

ΦLL
′
(k,k+,k′

+,k
′, iωn, iωn+). (10)

For temperatures and dopings not too close to the crit-
ical values characterizing the CDW metal-to-insulator
phase transition, the interband electron-phonon cou-
pling in H ′

1 can be neglected (notice that beyond
this approximation one needs four band indices in the

electron-hole propagator (9)). Now, for GLLλ (k + q′,k) ≈√
�/(2Mωλq′)×ggLLλ (k + q′,k) and

∣∣GLLλ (k + q′,k)
∣∣2 ≈∣∣Gλ(q′)

∣∣2, the Bethe-Salpeter equations [24] take the form
(see Fig. 3a)

[
i�νn + ELL′(k,k+) +ΣL(k, iωn) −ΣL′(k+, iωn+)

]
×ΦLL′

(k; iωn) =
1
�

[GL(k, iωn) − GL′(k+, iωn+)
]

×
{
δk,k′ − 1

β�

∑
λq′iνm

∣∣Gλ(q′)
∣∣2

N
Dλ(q′, iνm)

×ΦLL′
(k + q′; iωn + iνm)

}
, (11)

in obvious notation (ELL′(k,k+) = EL(k) − EL′(k+)
is the electron-hole-pair energy). In the intraband chan-
nel, these equations transform into two coupled equa-
tions, one is the charge continuity equation and the
other is the transport equation. These two equations have
to be solved self-consistently. For this purpose, we re-
tain in equations (11) only the most singular scattering
processes by putting iωn+ → EL′(k+)/� and iωn →
EL(k)/�, in two single-particle self-energies, ΣL(k, iωn)
and ΣL′(k+, iωn+), and in the related vertex corrections
on the right-hand side of the equations. In this way, the ex-
pression in the brackets on the left-hand side does not de-
pend on iωn, and the equations can be rewritten in terms
of the intraband (L = L′) and interband (L �= L′) induced
densities δnLL

′
(k, ω) defined by

δnLL
′
(k, ω) =

∑
k′

1
�
DLL′

(k,k+,k′
+,k

′, ω)

×eqL′L(k+,k)V ext(q, ω). (12)

Here

eqL
′L(k+,k)V ext(q, ω) ≡ �JL

′L
α (k)

EL′L(k+,k)
iEα(ω), (13)

with Eα(ω) and V ext(q, ω) = (i/qα)Eα(ω) being, respec-
tively, the external electric field and the related scalar
potential (notice that for L = L′ equation (13) reduces
to the expression eV ext(q, ω) = e(i/qα)Eα(ω) that is in-
dependent of k). Furthermore, qL

′L(k+,k) is the charge
vertex, given by equations (40) and (29), JL

′L
α (k) is the

current vertex and q = qαêα.

In equation (12), DLL′
(k,k+,k′

+,k
′, ω) is obtained

by the analytical continuation of DLL′
(k,k+,k′

+,k
′, iνn),

iνn → ω + iη. The summation of equations (11) over iωn
makes the single-particle self-energy contributions and the
related vertex corrections to appear on the same footing,
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resulting in the electron-hole self-energy of the form

�ΠLL′
α (k, ω) ≈ (14)

−
∑
λq′

∑
s=+1,−1

∣∣Gλ(q′)
∣∣2

N

{
1 − J̃LL

′
α (k + q′)
J̃LL′
α (k)

}

×
[

fb
λ (q′) + f(sEL′(k + q′))

�ω + iη + ELL′(k,k + q′) + s�ωλq′

+
fb
λ(q′) + f(sEL(k + q′))

�ω + iη + ELL′(k + q′,k) − s�ωλq′

]
.

The corresponding generalization of Π LL′
α (k, ω) to the

case with the interband electron-phonon coupling is
straightforward; however, it is beyond the scope of the
present work. fb

λ (q′) and f(EL(k)) ≡ fL(k) in equa-
tion (14) are, respectively, the Bose–Einstein and Fermi–
Dirac distribution functions. Finally, notice that the elec-
tron scattering on the static disorder, described by the
potential V1(q′), is included here through the replacement
ωλq′ → 0 and (1+2fb

λ(q′))|Gλ(q′)|2/N → |V1(q′)|2 in the
λ = 0 boson branch [20].

3.3 Transport equation and optical conductivity

The resulting self-consistent equation for the densities
δnLL

′
(k, ω) represents the generalization of the transport

equation [20,22],

[
�ω + ELL′(k,k+)

]
δnLL

′
(k, ω) + �Π LL′

α (k, ω)

× δñLL
′
(k, ω)

=
fL(k) − fL′(k+)
EL′L(k+,k)

i�JL
′L

α (k)Eα(ω). (15)

In this equation δñLL
′
(k, ω) is the contribution to

δnLL
′
(k, ω) proportional to J̃L

′L
α (k) (the effective cur-

rent vertices in equations (14) and (15) are J̃LLα (k) =
JLLα (k) in the intraband channel and J̃

LL
α (k) =

�ωJ
LL
α (k)/ELL(k,k) in the interband channel). Equa-

tion (15) is solved consistently with the charge continuity
equation and combined with the definition of the optical
conductivity tensor. The result is the optical conductivity
of the effective single-particle multiband models [19–21,25]

σsp
αα(ω) =

i

ω

1
V

∑
LL′kσ

(
�ω

EL′L(k+,k)

)nLL′ ∣∣JLL′
α (k)

∣∣2 (16)

× fL(k) − fL′(k+)

�ω + �Π LL′
α (k, ω) + ELL′(k,k) − E2

L′L′(k,k+)
�ω

,

with nLL = 1 in the intraband channel and nLL = 2 in the
interband channel. In the dynamical limit, the last term in
the denominator can be safely neglected. At this point it
should be recalled that the current vertices JLL

′
α (k) can be

shown in simple physical terms as: JLLα (k) = evLα (k) in the

intraband channel and J
LL
α (k) = (i/�)PLLα (k)ELL(k,k)

in the interband channel; vLα (k) is the electron group ve-
locity and P

LL
α (k) is the related interband dipole vertex.

It should also be noticed that the coherence factor in the
textbook expression for the interband contributions [5,8]
is slightly different from that in equation (16), as well as
that the phenomenological extension of the textbook ex-
pression is found to lead to the non-physical in-gap spectra
(see Fig. 1 in Ref. [17]).

3.4 ∆ = 0 case

Before turning to the detailed numerical analysis of the
expression (16), let us write equations (15) and (16)
explicitly for the (single-band) case in which ∆ = 0
and the relaxation rate Γ is presumably small but fi-
nite (Im{Π 0

α(k, ω)} ≈ Γ ). These expressions will make
the comparison of the present approach with the common
CDW approaches in Section 5 straightforward.

For ∆ = 0 and q = qxêx, the electron-hole-pair energy
is ε(k+) − ε(k) ≈ �ω0(q) = �qxv

0
x(k), with ω2

0(q) being
independent of k for k ≈ kF. Equation (15) can be written
now in the textbook form [22]

ωδn0(k, ω) − ω0(q)δn1(k, ω) = 0,(
ω + iΓ

)
δn1(k, ω) − ω0(q)δn0(k, ω) =

(−)
∂f(k)
∂ε(k)

iev0
x(k)Ex(ω). (17)

Introducing the boson field ψ(q, ω), which time deriva-
tive is proportional to the current induced by the external
electric field,

jind
x (ω) =

1
V

∑
kσ

ev0
x(k)δn1(k, ω) ≡ e

π
ψ̇(q, ω), (18)

one obtains the equation of motion

m
[
ω
(
ω + iΓ

) − ω2
0(q)

]
ψ(q, ω) = eπneff,0

xx Ex(ω). (19)

The resulting optical conductivity is given by the intra-
band term in equation (16), i.e., by the expressions

σxx(ω) =
e2neff,0

xx

m

iω

ω
(
ω + iΓ

)− ω2
0(q)

≡ iω

�

(
e

π

)2

VD0
ψ(q, ω). (20)

Here D0
ψ(q, ω) is the bare propagator of the field ψ(q, ω),

neff,0
xx is the effective number of conduction electrons,

neff,0
xx = −m

V

∑
kσ

(
v0
x(k)

)2 ∂f(k)
∂ε(k)

=
2
π

maav
0
x(kF)
�

, (21)

v0
x(k) = (1/�)∂ε(k)/∂kx is the bare electron group veloc-

ity and maa = 2�
2/(taa2) is the mass parameter.
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4 Discussion

4.1 Underdamped regime

For comparison with the textbook expressions for the
single-particle contributions to the optical conductivity,
it is convenient to turn back to the simplest case dis-
cussed in Section 3.1. The electron-hole self-energy is
approximated by its imaginary part and the imaginary
part is assumed to be small when compared to the in-
terband threshold energy; i.e., Π LL′

α (k, ω) ≈ iΓLL
′

α (k, ω)
and ΓLL

′
α (k, ω) ≈ ΓLL

′
α (ΓLLα ≡ Γ intra

α and Γ
LL
α ≡ Γ inter

α ,
hereafter). In the underdamped regime (Γ inter

α 	 2∆),
this approximation does not affect the spectrum in a crit-
ical manner, neither in the metallic regime (with 2kF not
too close to Qx), nor in the CDW state at temperatures
well below the critical temperature. In the metallic case,
the effective numbers of conduction electrons in the re-
sistivity, or in the Drude part of the optical conductivity,
consist of two parts, the residual one, which remains finite
at T → 0, and the thermally activated part. In the tb → 0
Peierls case there are only thermally activated electrons.
Finally, in the Peierls case with tb/∆ not too small there
is a portion of the Fermi surface on which the CDW gap
is not developed, leading again to a finite residual number
of conduction electrons.

To compare briefly the correct estimations of these
numbers with the oversimplified “semiconducting” expres-
sions encountered in the literature [26], we apply equa-
tion (16) now to the simplest metallic situation corre-
sponding to Q = (0.5π/a, 0) and tb → 0. In this respect, it
should be noticed that the present analysis is not focused
on the single-particle properties of the usual strictly 1D
model, the physics of which is dominated by the singular
nature of the forward scattering processes in the single-
electron self-energy. Instead, we consider the electron-hole
excitations in the typical Q1D model in which the Q1D
character is incorporated in the aforementioned form of
the electron-hole self-energy, where the forward scattering
contributions are removed by the Ward identity cancel-
lation of the q ≈ 0 self-energy and vertex corrections in
equation (14). The tb → 0 limit serves here only to replace
most of the integrations over the 2D Brillouin zone by the
1D integrations. The results obtained in this way can be
compared term by term to the well-known analytical ex-
pressions.

For example, the intraband conductivity along
the highly conducting direction is proportional to the
effective number of conduction electrons neff

xx, as seen from

σintra
αα (ω) ≈ ie2neff

αα

m(ω + iΓ intra
α )

, (22)

for α = x. neff
αα includes the contributions of both bands,

and it can be shown in two alternative ways, as a surface
integral in the k space, or the related volume integral,

neff
αα =

∑
L

neff
αα(L) = −m

V

∑
Lkσ

(
vLα (k)

)2 ∂fL(k)
∂EL(k)

=
1
V

∑
Lkσ

γLLαα (k)fL(k). (23)
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Fig. 4. Main figure: the normalized effective number of con-
duction electrons (maa/m)V0n

eff
xx as a function of the band fill-

ing for 2ta = 0.5 eV, 2tb = 0, T → 0 and ∆0 = 0 (dashed
line) and 10 meV (solid line). The diamonds represent the
dimensionless electron group velocity [2/(taπ2)]v0

x(kF). Inset:

The inverse effective mass tensors γCC
xx (k) and γ

CC
xx (k) for

Qx = 0.5π/a and ∆0 = 10 meV (solid and dotted lines, respec-
tively). The bare-band vertex (∆ = 0, dashed line) is given for
comparison.

In the first representation, it is given in terms of the elec-
tron group velocity, while in the second representation it
depends on the dimensionless inverse effective-mass ten-
sor γLLαα (k) = (m/�)∂vLα(k)/∂kα. The dependence of neff

xx

on the electron doping δ = 2akF/π is shown in Figure 4
for two choices of the distortion potential, ∆0 = 0 and
10 meV, and T → 0. The electron doping δ = nV0 (n
is the concentration of electrons and V0 is the primitive
cell volume of the ∆0 = 0 lattice) and the dimension-
less electron group velocity are also given for comparison.
The latter represents the analytical solution of the tb → 0
model.

The metallic regime of the primary experimental in-
terest corresponds to the case of a low electron/hole dop-
ing with respect to the quarter-filled band. In this case,
the residual part in neff

xx (shown in Fig. 4) is small when
compared to its ∆ = 0 value (dashed line in the figure).
Even for relatively low temperatures, the thermally ac-
tivated part in neff

xx becomes important, leading to pro-
nounced thermal effects in neff

xx. The thermal effects in
the Drude part of the optical conductivity, or in the
resistivity, are further illustrated in Figure 5 for the im-
perfectly nested CDW case (corresponding to the elec-
tron doping δ = 0.5 in Fig. 4). The temperature de-
pendence of the activation energy ∆ is parametrized as
∆(T ) = ∆0(1 − T/T0)β , with β = 1/2. neff

xx is shown for
four different values of tb and compared to the empiri-
cal expression neff

xx(T ) = exp{−∆(T )/(kBT )}neff
xx(T0) (the

residual part in neff
xx corresponds to the zero-temperature

interception value). The dashed and dot-dashed lines in
the inset of figure represent the partial contributions of
the lower and upper band for tb = 0, neff

xx(C) and neff
xx(C)

in equation (23), respectively. The latter two have to be
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Fig. 5. Main figure: the temperature dependence of the nor-
malized effective number of conduction electrons in the (im-
perfectly nested Qy = 0) CDW state for 2ta = 0.5 eV, 2tb = 0
(solid line), 1 meV (dashed line), 10 meV (dot-dashed line)
and 15 meV (dot-dot-dashed line), 2kF = Qx = 0.5π/a,
T0 = 66.7 K and ∆0 = 10 meV. The diamonds represent the
function exp{−∆(T )/(kBT )}.

contrasted to the numbers

nh =
1
V

∑
kσ

[1 − fC(k)], ne =
1
V

∑
kσ

fC(k) (24)

invoked from the theory of the ordinary semiconductors.
The numbers (24) are often taken as a good approxima-
tion for neff

xx(C) and neff
xx(C). However, the disagreement

between the expressions (24) and experimental observa-
tion is typically of two orders of magnitude [27], and, con-
sequently, the analyses based on the numbers (24) have to
be taken with reservation. For the parameters used in Fig-
ure 5, we obtain a factor of 25. This disagreement is easily
understood on noting that the semiconducting approach,
equations (24), completely neglects the coherence effects
in the inverse effective-mass tensor. In other words, by re-
placing the vertices γLLxx (k) by unity, when the numbers
neff
xx(C) and neff

xx(C) reduce to nh and ne indeed, this ap-
proach does not take carefully into account the fact that
the thermally activated electrons are related only to the
states in the thermal window around the Fermi level. No-
tice in this respect the singular behavior of the vertices
γLLxx (k) at 2kx = 0.5π/a, shown in the inset of Figure 4,
which dominates the behavior of neff

xx for 2kF ≈ 0.5π/a.
On the contrary, the common approaches based on the
surface-integral representation of neff

αα usually give rise to
the correct results.

Another important observation is that the optical con-
ductivity model (16) has a quite general form and is thus
applicable to variety of low-dimensional systems. In this
respect one should notice that the values of the effective
numbers neff

αα are generally a direct consequence of the co-
herent scattering of conduction electrons on the crystal
potential or on the periodically distorted lattice, irrespec-
tive of the band filling. These numbers represent the num-
bers of effectively free charge carriers, with the thermally
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Fig. 6. The development of the normalized total optical
conductivity with temperature in the underdamped regime:
2ta = 0.5 eV, 2tb = 1 meV, T0 = 66.7 K, ∆0 = 10 meV and
�Γ intra

a = �Γ intra
a = 5 meV.

activated part being usually very sensitive to temperature,
providing the estimation of the activation energy∆, or the
charge-transfer gap in the general case. The correspond-
ing numbers of bound charges, on the other hand, are the
numbers of excited electrons across the CDW gap [8] or
across the charge-transfer gap. The latter numbers depend
on temperature as well, as seen from the interband part
of equation (16), which can be rewritten in the form

σinter
αα (ω) ≈ iω

1
V

∑
L �=L′kσ

∣∣PLL′
α (k)

∣∣2

× fL(k) − fL′(k)
�ω + i�Γ inter

α + ELL′(k,k)
. (25)

The temperature dependence of the total optical con-
ductivity σsp

xx(ω) = σintra
xx (ω) + σinter

xx (ω) is calculated
for several underdamped regimes. The damping energies
�Γ intra

a and �Γ inter
a are assumed to be temperature in-

dependent, for simplicity, and small in comparison with
the scale 2∆. The results for the imperfectly nested case
are shown in Figure 6 and are essentially the same as
the results of the analogous nearly half-filled dimerized
band [19,25]. Although it is physically clear that at tem-
peratures T well below Tc Γ

inter
a is much larger than Γ intra

a ,
the spectra shown in Figure 6 are calculated for Γ intra

a =
Γ inter
a , for clarity. The shift of the MIR maximum in the

spectra (�ωMIR) with temperature follows roughly the
energy scale 2∆, giving an alternative method of estimat-
ing ∆ [5]. The spectra are also characterized by the in-
gap optical excitations, mainly in the energy range from
�ωmin ≈ 2∆− �Γ inter

a to 2∆. The cut-off energy �ωmin is
associated with the zero conductivity interception of the
line obtained by the linear extrapolation of the interband
conductivity. The square-root singularity at �ω = 2∆ is
absent here, and, according to reference [18], the same
shape of σinter

xx (ω) is expected down to zero temperature.

4.2 Overdamped regime

A completely different situation appears in the over-
damped regime where the damping energy �Γ inter

a
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Fig. 7. Main figure: the optical conductivity as a function
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as in Figure 6. The solid line in the total optical conductivity
at T = 67 K. Inset: The related interband contributions (the
parameters are the same as in the main figure).

becomes comparable to 2∆ and where the real part of the
electron-hole self-energy starts playing an important role.
Typical physical situation corresponding to this regime is
the CDW instability of the magnetic metals, where the
wide band electrons exhibit the CDW instability, and are
usually scattered by the strongly correlated electrons in
one or more narrow bands. As the present discussion of
the general expression (16) neglects the real part of the
self-energy, it turns out to be inappropriate for the de-
tailed quantitative analysis of the overdamped regime, but
it satisfactorily explains the interplay between two mutu-
ally competing energy scales, �Γ inter

a and 2∆. Figure 7
shows typical results. The position of the MIR peak is
at �ωMIR ≈ √

4∆2 + (�Γ inter
a )2. In this case, �ωmin is a

rather complicated function of the model parameters, but
it is close to the value obtained in the narrow band limit
of σinter

xx (ω), where all interband excitations are assumed
to appear close to the threshold energy ECC(k,k) ≈ 2∆.
In this case, one obtains

Re{σinter
xx (ω)} ∝ �ω�Γ inter

a

(�ω − 2∆)2 + (�Γ inter
a )2

× 8�ω∆

(�ω + 2∆)2 + (�Γ inter
a )2

. (26)

As a result, in the overdamped regime �ωmin increases
with increasing �Γ inter

a , for example, from the value
�ωmin ≈ ∆ at �Γ inter

a = 5∆ to �ωmin ≈ 2∆ at �Γ inter
a =

10∆. Knowing the experimental values of �ωMIR and
�ωmin, we can again estimate ∆ and �Γ inter

a and compare
∆ to the activation energy of transport coefficients.

As mentioned in the introduction, a clear evidence of
the overdamped regime is recently found in the vanadium
chain compound BaVS3 [3]. BaVS3 is the multiband sys-
tem with the (commensurate) CDW instability in which
one weakly correlated wide band and two strongly corre-

lated narrow bands coexist at the Fermi level. Thanks to
the extensive experimental activity in this system in re-
cent years [1–4], BaVS3 seems to be a good candidate for
detailed investigation of the overdamped regime.

5 Comparison with the common CDW
theories

In the low-energy examinations of the CDW systems it is
common to use different strictly 1D models with the non-
retarded short-range interactions in which not only the
forward-scattering but also the backward-scattering pro-
cesses in the electron-hole self energy are neglected [15,16].
These approaches are usually based on the bosonization
procedure. For example, for the simplest case with only
the forward-scattering interaction g4 taken into account,
the optical conductivity is given by the RPA diagrams in
Figure 8a. The first diagram is nothing but the ideal in-
traband conductivity of equation (20). The interaction g4
leads to the renormalization of the electron group velocity
in equations (20) and (21) in the way that

v0
x(k) → uρ =

√
m

m∗ v
0
x(kF),

while the electron dispersions in ∂f(k)/∂ε(k), together
with the related density of states, remain unaffected by
g4. The boson field ψ(q, ω) is found to satisfy the equation
of motion (19), while the optical conductivity is found to
be given by equations (20), (21), with v0

x(k) → uρ [9,16].
The present Q1D model differs from these strictly 1D

models in three important points. First, the electron-
electron interactions in question are the retarded,
phonon-mediated interactions [5–7], second, the collective
infrared-active mode is the phase phonon mode, which
participates in the total conductivity spectral weight with
usually less than 0.5 % (e.g., m∗ is of the order of 400m
in K0.3MoO3 [28]), and, finally, the external electric fields
are assumed to be well below the critical field required to
give the non-linear conductivity [12,13].

In this section, we want to determine the structure
of the photon-phase phonon coupling, and to compare
the obtained results with both the textbook results ob-
tained within the same Q1D model [5–8] and the results
of strictly 1D models [9,16]. We will derive here, for the
first time, a clear selection rule for the infrared-active (and
Raman-active) phonon modes. On the qualitative level,
the arguments are the following. For the quarter-filled
case shown in Figure 1, the electric fields couple to the
dipole moment of the phase phonon mode (the dipole mo-
ment is carried by the bound (condensed) electrons). For
∆ comparable to the band width, this mode is the ordi-
nary infrared-active phonon mode, characterized by the
effective ion charge q = qc/

√
2, the reduced ion mass M

and the concentration of ions 1/V0. On the other hand, for
∆ small in comparison with the band width, the electrons
in question are only weakly bound and the magnitude of
the dipole is now proportional to ẽ, which is q multiplied
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Fig. 8. (a) The collective contribution to the optical conduc-
tivity in the common 1D models with the forward-scattering
short-range interactions. (b) The collective contribution in the
present model. (c) The Hopfield-like processes neglected in the
present approach.

(a) (b)

Fig. 9. (a) The direct photon-phonon coupling and (b) the
indirect, electron-mediated photon-phonon coupling in pure
CDW systems.

by the ratio between the amplitudes of the electron and
ion oscillations. In the limit ∆ → 0, the dipole moment
vanishes.

To discuss this question quantitatively, we neglect
again the Umklapp processes in the electron dispersions
and focus the attention on the α = 0 two-band model of
equation (4). In this case, all relevant vertex functions are
simple functions of the auxiliary phase ϕ(k) defined by

tanϕ(k) =
2∆
εcc(k)

. (27)

In the long wavelength limit, the electron-phonon vertices
and the charge vertices of equations (37) and (40) become

gCCA (k+,k) = −gCCA (k+,k)

= − sin
ϕ(k+) + ϕ(k)

2
≈ − sinϕ(k),

g
CC
A (k+,k) ≈ eiφ(k) cosϕ(k),

gCCϕ (k+,k) = gCCϕ (k+,k)

= i sin
ϕ(k) − ϕ(k+)

2
≈ O(qα),

gCCϕ (k+,k) ≈ ieiφ(k), (28)

qCC(k+,k) ≈ qCC(k+,k) ≈ 1,

qCC(k+,k) ≈ �

e

qαJ
CC
α (k)

ECC(k+,k)
. (29)

According to Figure 9, the photon-phonon coupling con-
sists of two contributions, the direct coupling and the in-
direct, electron-mediated coupling. In the commensurate
case in which the Hopfield-like processes [29] of Figure 8c
are neglected, the linear direct coupling between external
electromagnetic fields (Ex(−q) is the electric component
of the field polarized along the highly conducting direc-
tion) and two q ≈ 0 phonon modes under consideration

(Fig. 9a) is given by the ground-state average of the cou-
pling Hamiltonian

Hext
1 = −

∑
λq

Ex(−q)
∑
LL′kσ

δPL
′L

xλ (k,q)c†L′kσcLkσ

δPL
′L

xλ (k,q) =
sλe√
2N

gL
′L

λ (k,k)ũxλq (30)

(sA = −1, sϕ = 1 and the indices in the vertex gL
′L

λ (k,k)
are A = ϕ, ϕ = A). Here ũxλq is the amplitude of the
electron oscillations and δPL

′L
xλ (k,q) is the related dipole

vertex. For the incommensurate case, the direct coupling
is given in a similar way in terms of the current vertex

δJL
′L

xλ (k,q) =
sλe√
2N

gL
′L

λ (k,k)
∂

∂t
ũxλq. (31)

Since the phase phonon field can be written as uxϕq =
2i〈uA〉ϕq [5], we obtain again that the current vertex is
proportional to the time derivative ϕ̇q, and the related
equation of motion is analogous to equation (19), with
e, m, neff,0

xx and ω0(q) replaced by ẽ, M , 1/V0 and ωϕq.
These parameters enter into the optical conductivity ex-
pression through two adjustable parameters (m∗ and ωϕq

in Eq. (6), for example).
As a result, the direct photon-phonon coupling con-

stant amounts to the replacement of c†L′kσcLkσ in equa-
tion (30) by 〈c†L′kσcLkσ〉 = δL,CδL′,CfC(k). This result
shows that the coupling function of the (Raman-active)
mode uAq, gCCϕ (k,k), vanishes, while the coupling func-
tion of the phase phonon mode uϕq is finite and, as men-
tioned above, is proportional to the magnitude of the
charge-density wave qc, which is given by

qc = −e 1
N

∑
kσ

sinϕ(k)fC(k). (32)

Notice that the fact that the phonons uλq in equation (30)
couple to external electromagnetic fields through the func-
tion gCCλ (k,k), rather than gCCλ (k,k), is a consequence of
the fact that the variations Vλ(ri) in equation (2) are pro-
portional to the derivative of uλi with respect to ri, rather
than to the displacement vector uλi.

In the Hopfield-like processes the photon momentum
is shared between an electron-hole pair and a infrared-
active phonon in the way described by the dipole density
operator

∑
LL′q′kσ

δPL
′L

xϕ (k + q′ − q,k,q′)c†L′k+q′−qσcLkσ

in equation (30), with gL
′L

A (k,k) in the dipole vertex re-
placed by gL

′L
A (k + q′ − q,k). The sum over states in the

phase phonon branch (q′) is restricted to the region where
the the vertex gL

′L
A (k+q′ −q,k) of equation (37) is non-

zero.
The indirect, electron-mediated photon-phonon cou-

pling shown in Figure 9b, on the other hand, is given by
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the interband correlation function χinter
1,λ (q, ω) defined in

Appendix, or by equation (4.3) in reference [7]. Accord-
ing to equations (28) and (29), the product of vertices
qCC(k,k+) and gCCλ (k+,k) in this correlation function is
proportional to exp{−φ(k)}JCCx (k), i.e., it is proportional
to the bare electron group velocity v0

x(k). v0
x(k) is an odd

function of kx and, consequently, the coupling function
χinter

1,λ (q, ω) vanishes for both phonon branches. The back-
ground of this result is the fact that the electron-phonon
coupling g is independent of the electron wave vectors.
A more complicated form of the infrared selection rules
and the photon-phase phonon coupling functions can be
expected in the models in which the electron-phonon cou-
pling is related to the variations of the bond energies [6]
(namely, g depends now on the electron wave vectors, in-
troducing a new channel in the electron-photon coupling).

Finally, it is important to notice that the common text-
book analyses [5,7,8] explain the photon-phase phonon
coupling in the way (see Eqs. (4.3) and (4.7) in Ref. [7])
which is formally equivalent to the replacement of the bare
electron group velocity in χinter

1,λ (q, iνn) by v0
x(kF). (That

is, both the single-particle interband conductivity and the
photon-phase phonon coupling are given in terms of the
dimensionless function f(ω) defined in Ref. [5].) Such cor-
relation function is finite indeed and is of the same order
as the expression (32). However, when analyzing compli-
cated CDW systems, this approximation has to be taken
with reservation.

6 Conclusion

In this article, we have derived the infrared selection rules
for the single-particle and collective contributions to the
optical conductivity in the tetramerized CDW system
with the electron-phonon coupling related to the varia-
tions of electron site energies. We have shown that the
relations between the effective numbers of charge carri-
ers and the activation energy of transport coefficients, or
the MIR optical threshold energy, observed in the ordi-
nary Peierls systems are naturally explained in terms of
the CDW coherence effects. The same coherence effects are
expected to be important in the correlated multiband sys-
tems with the CDW instability, as well. The quantitative
analysis of the latter systems is left for future investiga-
tions.

This research was supported by the Croatian Ministry of Sci-
ence and Technology under Project 119-1191458-0512.

Appendix A: Vertex functions and correlation
functions in the tetramerized Q1D electronic
system

In order to fix the notation, here we rewrite the text-
book expressions [5–8] for the exactly solvable tetramer-
ized CDW case in which the electron-phonon coupling is

independent of the electron wave vectors (Eq. (2) in the
main text).

The total Hamiltonian reads as H = H0 + H ′
1, with

the bare Hamiltonian and the electron-phonon coupling
Hamiltonian given, respectively, by

H0 =
∑
kσ

ε(k)c†kσckσ +
1

2M

∑
l=±1

∑
q≈0

[
p†q+lQpq+lQ

+
(
Mω0

q+lQ

)2
u†q+lQuq+lQ

]
,

H ′
1 =

∑
q≈0kσ

[
geiφ√
N

(
uAq+iuϕq

)
c†k+qσck+Qσ + H.c.

]
.(33)

Here ε(k) = −∑
α 2tα cos kαaα is the bare electron dis-

persion. pq+lQ is the phonon field conjugate to uq+lQ and
ω0

q+lQ is the bare phonon frequency.
The result of the phase transformation of H , which

leads to the replacement uAq → δq,0〈uA〉 + uAq, is the
effective tetramerized single-electron Hamiltonian

H̃e
0 =

∑
ll′kσ

H ll′
0 (k)c†lkσcl′kσ, (34)

with the index l = −1, 0, 1, 2, and with
∑

k running over
the first Brillouin zone of the tetramerized lattice. The
matrix elements in the Hamiltonian (34) are H ll

0 (k) =
εl(k) = ε(k+ lQ), representing the dispersions of four ar-
tificially tetramerized bands, and H ll+1

0 (k) = ∆ exp{iφ},
with ∆ = g〈uA〉/

√
N being the interband hybridization

term. The diagonalization of (34) leads to

H̃e
0 =

∑
Lkσ

EL(k)c†LkσcLkσ. (35)

The EL(k) are four Bloch energies of the present problem
(Eqs. (4) in the main text), and they, together with the
total energy of the electronic system, depend on the phase
φ in H ll+1

0 (k).
The observation (see the discussion of Figure 1 in

Sect. 2.1) that, for 〈uA〉 �= 0, the lattice vibrations asso-
ciated with uAq and uϕq are Raman and infrared active,
respectively, means that there will be the direct photon-
phonon coupling similar to the photon-phonon coupling
in ordinary semiconductors. In principle, one can also ex-
pect the electron-mediated photon-phonon coupling, and,
as discussed in detail in Section 5, in the common micro-
scopic approaches, exactly this coupling is regarded as the
dominant coupling [5–8]. It is given in terms of the dimen-
sionless electron-phonon coupling constants,
gL

′L
λ (k+,k) in

H̃ ′
1 =

∑
λq≈0

uλq
∑
LL′kσ

g√
N
gL

′L
λ (k+,k)c†L′k+qσcLkσ, (36)

and the electron-photon coupling constants (current ver-
tices).
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The coupling constant gL
′L

λ (k+,k) in equation (36) is
given in the usual way

gL
′L

λ (k+,k) =
∑
l

[
eiφλUk+q(l, L′)U∗

k(l + 1, L)

+e−iφλUk+q(l + 1, L′)U∗
k(l, L)

]
(37)

(k+ = k + q). Here φA = φ and φϕ = φ + π/2 are two
useful abbreviations. The Uk(l, L) are the transformation-
matrix elements defined by

c†k+lQσ ≡ c†lkσ =
∑
L

Uk(l, L)c†Lkσ. (38)

The coupling of electrons to external long-wavelength
scalar fields has the form which is similar to equation (36),

Hext =
∑
q

V ext(−q)
∑
LL′kσ

eqLL
′
(k+,k)c†L′k+qσcLkσ.

(39)
Here the qL

′L(k+,k) are the dimensionless monopole-
charge vertices, in the intraband channel equal to unity,
and in the interband channel proportional to the inter-
band current vertex JL

′L
α (k),

qL
′L(k+,k) =

∑
l

Uk+q(l, L′)U∗
k(l, L) (40)

≈ δL,L′ + (1 − δL,L′)
∑
α

(�/e)qαJL
′L

α (k)
EL′(k+) − EL(k)

,

with q =
∑

α qαêα.
Finally, after neglecting the relaxation processes in the

electron-hole propagators associated with the disorder in
the system, the renormalization of the phonon frequencies
in (33) is given in terms of the phonon self-energy

�Πλ(q, iνn) = g2V0 χλ,λ(q, iνn), (41)

where the correlation function χλ,λ(q, iνn) has the form

χλ,λ(q, iνn) =
1
V

∑
LL′kσ

∣∣gL′L
λ (k+,k)

∣∣2

× fL′(k+) − fL(k)
i�νn + EL′(k+) − EL(k)

. (42)

In the same approximation, the electron-mediated cou-
pling of phonons to the external scalar fields is given by
χλ,1(q, iνn). This correlation function is obtained by re-
placing the vertices

∣∣gL′L
λ (k+,k)

∣∣2 in equation (42) by
gL

′L
λ (k+,k) qLL

′
(k,k+). Similarly, the charge-charge cor-

relation function χ1,1(q, iνn) is given by equation (42)
with |qLL′

(k,k+)|2 being the vertices in question. For
all three correlation functions we obtain χi,j(q, ω), i, j ∈
{1, λ}, by the analytical continuation of χi,j(q, iνn).
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Barǐsić, H. Berger, D. Cloötta, L. Forró, H. Hóchst, I.
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